| 产品名称: | 高稳定性适合各种封装-军工贴片电感代理商-湛江贴片电感 |
| 浏览量: | ![]() |
| 价格: | |
| 供货总量: | |
| 规格: | |
| 更新日期: | 2022年03月25日,有效期:180天 |
| 关键字: | 20mh贴片电感代理商 耐高温贴片功率电感封装 焊烙铁焊接贴片电感封装 共模贴片功率电感供应商 大功率贴片电感代理商 贴片穿心电感封装 |
| 联系人: | ![]() |
| 联系电话: | ![]() |
| 即时通讯: | ![]() |






【产品用途】各种大功率开关电源、UPS电源、转换电源
结构可靠、便于安装。
抑制浪涌电流能力强、吸收能量大。
工作的稳态电流大。
寿命长、可靠性高。
所有来料出料均实行全检制度,并成立专项品检队伍,按照ISO品质管理体系标准严格执行,保障物料的质量稳定,出厂合格率≥99.9%,且根据客户需要通过ROSH、REACH等标准认证,从而全方位的保障客户权益,并承诺产品均为品牌原厂 假一赔十,提供售后质保障。

原装进口货源,产品质量有认证,所有产品均为原厂原装,通过质量检验标准,从此告别假货。
具有很好的性价比具有很好的性价比;
省去所有层级中间环节,直面对接行业采购,使应用企业真正从源头省去采购成本,实至名归的性价比!
专有部门严格挑选专有部门严格挑选
森睿专门设立了检测部门,所有产品都要经过严格检测筛选。2大仓库亿级现货,实现高效配送,快至3天直达客户,全面满足客户交期要求。实现产品品种、价格、品质、交期、服务多维度核心竞争力。

分压电路的选取
1.若实验要求某部分电路的电压变化范围较大,或要求某部分电路的电流或电压从零开始连续可调,或要求多测几组I、U数据,则必须将滑动变阻器接成分压电路。 例1。测定小灯泡“6V,3W”的伏安特性曲线,要求实验中灯泡两端的电压从零开始连续可调。供选择的器材有:电压表V1(量程6V,内阻20kΩ),电流表A1(量程3A,内阻0.2Ω),电流表A2(量程0.6A,内阻1Ω),变阻器R1(0~100Ω,0. ),变阻器R2(0~20Ω,0.2A),学生电源E(6~8V)、开关及导线若干。选择出符合实验要求的实验器材并设计出实验电路。 分析:不管是从题中要求灯泡两端电压必须从零开始连续可调的角度考虑,还是从为了 终能较准确画出伏安特性曲线必须多测几组I、U数据的角度考虑,限流电路都难以满足要求,因此必须采用分压电路。实验电路如图3所示。 器材包括:电压表V1、电流表A2、变阻器R2、电源、开关及导线。 若实验中要用小阻值的滑动变阻器控制大阻值负载,或者题中所给电源电动势过大,尽管滑动变阻器阻值也较大,但总电流大于负载的额定电流值,或总电流大于接入电表的量程,此时的滑动变阻器也应接成分压式电路;若负载电阻的额定电流不清楚,为安全起见,一般也连成分压电路。 例2。为了较准确地用伏安法测定一只阻值大约是3kΩ的电阻,备用的器材有:A.直流电源,电压12V,内阻不计;B.电压表,量程0~3~15V,内阻10kΩ;C.电流表,量程0~0.6~3A,内阻20Ω;D.毫安表,量程5mA,内阻200Ω;E、滑动变阻器,阻值0~50Ω;G、电键及导线若干。试设计出实验电路。 分析:本题中,由于待测电阻约为3kΩ,而滑动变阻器控制大阻值负载的情况,因此应将滑动变阻器接成分压电路,否则无法调节负载电阻两端的电压及通过负载电阻的电流的有效变化而造成较大的偶然误差。设计电路如图4所示(外接法及电表选取分析略)。 例3。用伏安法测一个电阻Rx的阻值。提供器材有:待测电阻Rx(约5kΩ)、电压表(0~3V,内阻100kΩ)、微安表(0~500μA,内阻100Ω)、变阻器(0~20kΩ)、稳压电源(输出电压15V)。试设计出实验电路。 分析:若接成限流电路,电路中 小电流:Imin=E/R=15/(5+20)×103A=0.6×10-3A=600μA,大于微安表的量程。因此,为了电路安全必须将变阻器接成分压电路,如图2所示。

电容根据储能机理的不同可以分为以下两类:
1、双电层电容:是在电极/溶液界面通过电子或离子的定向排列造成电荷的对峙而产生的。对一个电极/溶液体系,会在电子导电的电极和离子导电的电解质溶液界面上形成双电层。当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。这时对某一电极而言,会在一定距离内(分散层)产生与电极上的电荷等量的异性离子电荷,使其保持电中性;当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中呈电中性,这便是双电层电容的充放电原理。 2、法拉第准电容:其理论模型是由Conway首先提出,是在电极表面和近表面或体相中的二维或准二维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸脱附和氧化还原反应,产生与电极充电电位有关的电容。对于法拉第准电容,其储存电荷的过程不仅包括双电层上的存储,而且包括电解液离子与电极活性物质发生的氧化还原反应。当电解液中的离子(如H+、OH-、K+或Li+)在外加电场的作用下由溶液中扩散到电极/溶液界面时,会通过界面上的氧化还原反应而进入到电极表面活性氧化物的体相中,从而使得大量的电荷被存储在电极中。放电时,这些进入氧化物中的离子又会通过以上氧化还原反应的逆反应重新返回到电解液中,同时所存储的电荷通过外电路而释放出来,这就是法拉第准电容的充放电机理。


