





【产品用途】各种大功率开关电源、UPS电源、转换电源
结构可靠、便于安装。
抑制浪涌电流能力强、吸收能量大。
工作的稳态电流大。
寿命长、可靠性高。
所有来料出料均实行全检制度,并成立专项品检队伍,按照ISO品质管理体系标准严格执行,保障物料的质量稳定,出厂合格率≥99.9%,且根据客户需要通过ROSH、REACH等标准认证,从而全方位的保障客户权益,并承诺产品均为品牌原厂 假一赔十,提供售后质保障。

原装进口货源,产品质量有认证,所有产品均为原厂原装,通过质量检验标准,从此告别假货。
具有很好的性价比具有很好的性价比;
省去所有层级中间环节,直面对接行业采购,使应用企业真正从源头省去采购成本,实至名归的性价比!
专有部门严格挑选专有部门严格挑选
森睿专门设立了检测部门,所有产品都要经过严格检测筛选。2大仓库亿级现货,实现高效配送,快至3天直达客户,全面满足客户交期要求。实现产品品种、价格、品质、交期、服务多维度核心竞争力。

怎样实现贴片电容的充放电
1.对于普通贴片电容,可直接用+/-表针象测量电阻样测量电容。当刚接触时应当有充电现象,充电完成后则应显示无穷大,否则为存在漏电现象。当然,如果是容量很小的电容可能就不会看到充电现象了。在允许的情况下尽量用高阻档测量,但是注意不要用手握表针两端,防止人体电阻影响测量数据。 2.电解电容由于其制造材料的问题,用高阻档测量时会存在充电后表针无法回归无穷大的现象,所以应尽量用1K档为好。另外,电解电容即使不是能够回归无穷大,也不能说明就是坏了或者漏电,因为电解电容的漏电指标比普通电容要宽松的多。另外,当正向测量后,应将电容放电后再反向测量,以防止电容放电打表。 3.现在有台可以测量电容的数字万用表或者带贴片电容测量附件的指针式万用表当然好,但是没有的人还是占多数。不知您注意了没有,许多指针式万用表其实是有电容测量档的(一般同在交流10V刻度上),不过还会在电容刻度上附注一个交流10V的数字---这说明是需要外接交流10V电源并且使用交流10V档,将万用表、电容及交流10V工频电源串联连接来测量电容容量的,当然也是利用的电容可以充放电的原理,不过测量的容量范围都不大。 4.用指针万用表的同仁,可以在平时有意识地检测已知完好的贴片电容并记住其测量档位及数值,来作为今后检测电容是否完好的大致依据,这在没有专门检测仪表时很有用。 5.用仪表测量电容的原理也和用10V交流电压档测量电容的原理差不多,只不过是用波形、频率及幅度固定的(或设置多个档位)震荡发生器代替了交流电源、用电桥电路代替了万用表的表头而已(当然精确度高得多了),可以在网上找其电路或工作原理看看。 贴片电容在电路中主要起什么作用 贴片电容的容抗随着两端加的交流电的频率不同而改变,Z=1/2*3.14*FC。根据需要滤除哪个频率的电流,设置不同的容值。这样就可以把不需要的电流引到地,就完成了滤波。而对需要的频率的电流,电容是通路的或阻抗很小。交流电通过时,是反复充电和放电的过程。 退偶电容,滤波电容,旁路电容,三者都有什么作用,它们之间的区别和联系是什么 例如,晶体管放大器发射极有一个自给偏压电阻,它同时又使信号产生压降反馈到输入端形成了输入输出信号耦合,这个电阻就是产生了耦合的元件,如果在这个电阻两端并联一个电容,由于适当容量的贴片电容对交流信号较小的阻抗(这需要计算)这样就减小了电阻产生的耦合效应,故称此电容为去耦电容。 旁路电容不是理论概念,而是一个经常使用的实用方法,在50--60年代,这个词也就有它特有的含义,现在已不多用。电子管或者晶体管是需要偏置的,就是决定工作点的直流供电条件。 例如电子管的栅极相对于阴极往往要求加有负压,为了在一个直流电源下工作,就在阴极对地串接一个电阻,利用板流形成阴极的对地正电位,而栅极直流接地,这种偏置技术叫做“自偏”,但是对(交流)信号而言,这同时又是一个负反馈,为了消除这个影响,就在这个电阻上并联一个足够大的点容,这就叫旁路贴片电容。后来也有的资料把它引申使用于类似情况。

潮湿的环境对电容电参数有什么影响
电容在空气中湿度过高时,水膜凝聚在电容器外壳表面,可使电容器的表面绝缘电阻下降。水分还可渗透到电容器介质内部,使电容器介质的绝缘电阻绝缘能力下降。离子迁移可严重破坏正电极表面银层,引线焊点与电极表面银层之间,间隔着具有半导体性质的氧化银,使无介质电容器的等效串联电阻增大,金属部分损耗增加,电容器的损耗角正切值显著上升。表面绝缘电阻则因无机介质电容器两电极间介质表面上存在氧化银半导体而降低。 电容空气中湿度过高时,水膜凝聚在电容器外壳表面,可使电容器的表面绝缘电阻下降。此外,对于半密封结构电容器来说,水分还可渗透到电容器介质内部,使电容器介质的绝缘电阻绝缘能力下降。 电容 因此,高温、高湿环境对电容器参数恶化的影响极为显著。经烘干去湿后电容器的电性能可获改善,但是水分子电解的后果是无法根除的。例如,电容器的工作于高温条件下,水分子在电场作用下电解为氢离子(H+)和氢氧根离子(OH-),引线根部产生电化学腐蚀。即使烘干去湿,也不可能使引线复原。 离子迁移可严重破坏正电极表面银层,引线焊点与电极表面银层之间,间隔着具有半导体性质的氧化银,使无介质电容器的等效串联电阻增大,金属部分损耗增加,电容器的损耗角正切值显著上升。 由于正电极有效面积减小,电容器的电容量会因此而下降。表面绝缘电阻则因无机介质电容器两电极间介质表面上存在氧化银半导体而降低。银离子迁移严重时,两电极间搭起树枝状的银桥,使电容器的绝缘电阻大幅度下降。 综上所述,银离子迁移不仅会使非密封无机介质电容器电性能恶化,有可能导致内部短路、高的漏电流、容值损失、ESR值的上升和电路开路。而且可能引起介质击穿场强下降, 导致电容器击穿。


