





【产品用途】各种大功率开关电源、UPS电源、转换电源
结构可靠、便于安装。
抑制浪涌电流能力强、吸收能量大。
工作的稳态电流大。
寿命长、可靠性高。
所有来料出料均实行全检制度,并成立专项品检队伍,按照ISO品质管理体系标准严格执行,保障物料的质量稳定,出厂合格率≥99.9%,且根据客户需要通过ROSH、REACH等标准认证,从而全方位的保障客户权益,并承诺产品均为品牌原厂 假一赔十,提供售后质保障。

原装进口货源,产品质量有认证,所有产品均为原厂原装,通过质量检验标准,从此告别假货。
具有很好的性价比具有很好的性价比;
省去所有层级中间环节,直面对接行业采购,使应用企业真正从源头省去采购成本,实至名归的性价比!
专有部门严格挑选专有部门严格挑选
森睿专门设立了检测部门,所有产品都要经过严格检测筛选。2大仓库亿级现货,实现高效配送,快至3天直达客户,全面满足客户交期要求。实现产品品种、价格、品质、交期、服务多维度核心竞争力。

限流电阻限流法与分压法的区别与选取原则
限流法与电路串联,分压法与电路并联(如果在有箭头的划变导线上联有用电器,且划变接有三根导线时就为此)区别: 1.限流接法线路结构简单,消耗能量少; 2.分压接法电压调整范围大,可以从0到路端电压之间连续调节;限流电阻和分压电阻的区别选用原则: 1.优先限流接法,因为它电路结构简单,消耗能量少;2.下列情况之一者,必须采用分压接法: (1)当测量电路的电阻远大于滑动变阻器阻值,采用限流接法不能满足要求时;(2)当实验要求多测几组数据(电压变化范围大),或要求电压从0开始变化时;(3)电源电动势比电压表量程大很多,限流接法滑动变阻器调到 大仍超过电压表量程时时。 分压,电压的变化范围是0-E(滑动变阻器的两端接电源的正负极,滑片接一条支路,也就并联在电路中)限流,电压的变化范围是X-E(也就是不能调处0电压,这个是一端不接,也就是只连接两根导线,串联在电路中)因为功耗小一般接电路优先考虑的是限流。 但是需要电压从0开始变化的时候,就要使用分压法了,测伏安特性的时候,一定要采用分压法。 区别-- 1.滑动变阻器的限流法是串联在电路中的。滑动变阻器的分压法是并联在电路中的。 2.滑动变阻器的分压法的电压可从零开始调节,而限流法不能从零开始调节3.限流法消耗的功率比分压法少。 应用-- 1.需要调节范围大,且可从零开始调节时,用分压法。 2.要使电路中消耗的功率较小时,用限流法。 滑动变阻器分压与限流接法的选择滑动变阻器常被用来改变电路的电压和电流,根据连接方法的不同,可分为分压接法和限流接法。分压法是把整个变阻器的所有阻值接入电路,再从滑片和变阻器的一个端点上引出部分电压向外供电。限流法是变阻器的部分阻值串入电路,通过改变有效阻值来改变整个电路的电流。通常变阻器应选用限流接法,但在下列三种情况下,必须选择分压连接方式。 (1)若采用限流电路,电路中的 小电流仍超过用电器的额定电流时,必须选用分压电路。 (2)当用电器电阻远大于滑动变阻器全值电阻,且实验要求的电压变化范围较大或要求测量多组实验数据时,必须选用分压电路。 (3)要求回路中某部分电路的电压从零开始可连续变化时须选用分压电路。

电感Q值对对射频巴伦的影响
做过WiFi产品的读者一定知道射频巴伦,英文称之为Balun,就是balance-unbalance的缩写,含义为平衡-不平衡转换器,常见于RFTranceiver的射频输出/输入引脚,用于对射频信号实现差分到单端的转换,后文直接称之为Balun;做过射频的读者也一定知道电感的Q值,即品质因数,是衡量电感器件的主要参数。是指电感在某一频率的交流电压下工作时,所呈现的感抗与其等效损耗电阻之比。电感的Q值越高,其损耗越小,效率越高。 不知道正在阅读此文的读者是否经历过这样的问题:明明射频部分所用的Balun与参考设计所用的值是一样的,可是射频指标就是很差。笔者本人 近就遭遇了这样的问题。 Atheros的AR9341是一款十分流行的WLANSoC,笔者也在多款产品的设计中采用了这款芯片。在之前的产品设计中,射频指标从未出现过任何问题,基本上都能达到业界 指标,但是在 近的一款产品中,Rx接收灵敏度出奇地差,仅略高于IEEE国际标准,这对于笔者这样的 主义者是完全无法接受的。原始的测试数据如下图,即artgui窗口中的log,可以看到802.11g54Mbps速率下接收灵敏度仅能达到可怜的-66dBm,这与其他产品的-78~-80dBm相差甚远。 相比于其他产品的设计,这款产品射频部分没有LNA和PA,所以接收灵敏度比较差是意料之中的,但是不应该差得如此离谱。在确认了.ref文件中设置为noxlna及正确的switchtable之后,笔者便开始了漫长的调试过程。AR9341参考设计的Rx电路十分简单,由于保密关系,笔者无法给出这部分的原理图,但显而易见,能够影响接收灵敏度的也就是Balun部分了。笔者尝试着变更过Balun部分的电感值与电容值,会对接收灵敏度产生一定的影响,但是都不会带来巨大的改善。 百般无奈之下,笔者比较了一下量产的PCBA与这这款产品Balun部分射频器件的外观(这是本人经常使用的一种快速诊断问题的方法),结果发现一颗电感相差巨大:量产所用的电感为金黄色,而这款产品的电感是白色的!很明显,问题就出在这里。根据以前的项目经验,得知这颗金黄色电感是Muruta的LQP系列射频电感,也是我在BOM中指定的物料,那么结论就是,这颗白色的电感是假的!将金黄色电感更换至这款产品的Balun部分,802.11g54Mpbs速率下的接收灵敏度大幅提升至-73Bm,完全可以满足一般要求。 进一步,白色电感为叠层电感,其 典型的缺点就是Q值很低,自谐振频率也很低,在射频频率下,其表现出来的很可能是容抗,完全失去一颗电感应有的特性;金黄色电感是薄膜电感,具有较高的Q值与较高的自谐振频率,例如MurataLQP系列电感典型Q值为13,自谐振频率为6GHz,完全可以满足2.4GHz频段的要求。 通过这次调试,笔者意识到在其他产品中都具有外部LNA及PA,所以这个问题没有暴露出来,但是在这种没有外部LNA的情况下就完全暴露了,因此笔者建议读者在做射频Balun的设计时,请务必选择高Q值的电感,例如Murata的LQP,LQW系列,电容可选择Murata的GJM系列。 关于射频巴伦 曾经有很多读者向我咨询WiFi产品射频Balun部分的设计原理,我每次的回答都是一样的:请与参考设计一致。这个理由其实很简单,WLANSoC并不会在Datasheet中给出差分输入阻抗,那么射频Balun的设计也就无从谈起,只有芯片公司的人才能知道,因此对于射频工程师来说 的选择就是与参考设计保持一致。


